Less than or equal to is monotonic over addition
leq.lf
nat : type.
z : nat.
s : {x : nat} nat.
leq : {x1: nat} {x2: nat} type.
leq-z : {x2: nat} leq z x2.
leq-s : {x1:nat}{x2:nat}{d:leq x1 x2} leq (s x1) (s x2).
eq-nat : {x1: nat} {x2: nat} type.
eq-nat-z : eq-nat z z.
eq-nat-s : {x1:nat}{x2:nat}{d:eq-nat x1 x2} eq-nat (s x1) (s x2).
plus : {x1: nat}{x2:nat}{x3:nat} type.
plus-z : {x:nat} plus z x x.
plus-s : {x1:nat}{x2:nat}{x3:nat}{d:plus x1 x2 x3} plus (s x1) x2 (s x3).